Chapter 23: Electric Potential

Electric Potential Energy

• It turns out (won’t show this) that the electrostatic force,
\[\vec{F}_{elec} = k \frac{q_1 q_2}{r^2} \hat{r}, \] is conservative.

• Recall, for any conservative force, it’s always possible to write the work done by the force as \(-\Delta U\), for some potential energy, \(U\). So, for the electrostatic force, it must be true that the work \(W_{elec}\) done by the electrostatic force can always be written:

\[W_{elec} = -\Delta U_{elec}, \] (1)

for some electric potential energy, \(U_{elec}\).

• What is the function \(U_{elec}\)?
Electric Potential Energy of Two Point Charges
Consider a positive test charge q_0 held above a source charge, Q, which is negative. The electrostatic force that Q exerts on q_0 is:

$$\vec{F}_{elec} = k \frac{q_0 Q}{r^2} \hat{r} = k \frac{q_0 Q}{r^2} \hat{r}$$

This force points toward the (negative) source charge Q.

Now imagine grabbing q_0 and moving it upward, away from Q. To do this, you apply a force to q_0 that I will call “$\vec{F}_{applied}$.” You could jerk q_0 rapidly upward, exerting a force $\vec{F}_{applied}$ that is much larger in magnitude than \vec{F}_{elec}. But if you did, you’d be accelerating q_0, and the work that you do would go into increasing its kinetic energy as well as its potential energy. By contrast, if you imagine lifting q_0 quasi-statically, meaning so slowly that at every instant, q_0 is essentially in static equilibrium, then the acceleration of q_0 will be arbitrarily small. In this idealized situation, the work that you do goes into changing just the potential energy, not the kinetic energy.
If \(q_0 \) is raised quasi-statically, then

\[
\vec{F}_{\text{applied}} = -\vec{F}_{\text{elec}}
\]

\[
\vec{F}_{\text{applied}} = -k \frac{q_0 Q}{r^2} \hat{r}
\]

and the work done by \(\vec{F}_{\text{applied}} \) is:

\[
W_{\text{applied}} = \int_{r_i}^{r_f} \vec{F}_{\text{applied}} \cdot d\vec{r} = \int_{r_i}^{r_f} \left(-k \frac{q_0 Q}{r^2} \hat{r}\right) \cdot (dr \hat{r}) = -kq_0 Q \int_{r_i}^{r_f} \left(\frac{1}{r^2}\right)dr (\hat{r} \cdot \hat{r})
\]

But \(\hat{r} \cdot \hat{r} = 1 \), so:

\[
W_{\text{applied}} = -kq_0 Q \int_{r_i}^{r_f} \left(\frac{1}{r^2}\right)dr = -kq_0 Q \left[-\frac{1}{r}\right]_{r_i}^{r_f} = \frac{kq_0 Q}{r_f} - \frac{kq_0 Q}{r_i}
\]

Because \(q_0 \) was imagined to be raised quasi-statically,

\[
W_{\text{applied}} = \Delta U_{\text{elec}}
\]

\[
\frac{kq_0 Q}{r_f} - \frac{kq_0 Q}{r_i} = U_{\text{elec}}^f - U_{\text{elec}}^i
\]

\((*)\)
Looking at (*), it seems tempting to identify \(kq_0Q/r_f \) as \(U_{elec}^f \) and \(kq_0Q/r_i \) as \(U_{elec}^i \). This is exactly what we do.

In general, then, the potential energy of any two point charges \(q_1 \) and \(q_2 \) separated by a distance \(r \) is:

\[
U_{elec} = \frac{kq_1q_2}{r}
\]

(2)
Electric Potential Energy of N Point Charges

Imagine a collection of N point charges, q_1, q_2, \ldots, q_N. Let the distance between the ith charge, q_i, and the jth charge, q_j, be called r_{ij}. Then the potential energy of this pair of charges is:

$$U_{elec} = \frac{kq_i q_j}{r_{ij}}$$

Then the total potential energy of the system of N charges is:

$$U_{total} = \sum_{i<j} \frac{kq_i q_j}{r_{ij}}, \quad (3)$$

in which the sum is performed over i and j from 1 to N, but including only terms for which $i < j$ to avoid overcounting or counting the interaction of any charge with itself.

It’s important to realize that this energy is energy associated with the **entire system** of N charges, **not any single charge**.
Electric Potential

The electric potential, V, is defined to be the potential energy per unit “test charge”:

$$V \equiv \frac{U_{elec}}{q_0}$$ \hspace{1cm} (4)

Note:
- Unit (SI): $J/C \equiv \text{"Volt"}$, V (in honor of Alessandro Volta, inventor of the voltaic pile...battery)

Voltage

The voltage between two points is the difference in potential, ΔV, between them. From (4), it follows immediately that:

$$\Delta V = \frac{\Delta U_{elec}}{q_0}$$ \hspace{1cm} (5)
Potential due to Point Charges

For a source charge \(Q \) and a test charge \(q_0 \), we saw earlier that the potential energy was:

\[
U_{elec} = \frac{kq_0Q}{r}
\]

From (4), then, the electric potential (“potential,” for short) at the location of \(q_0 \) is:

\[
V = \frac{U_{elec}}{q_0} = \frac{\left(\frac{kq_0Q}{r}\right)}{q_0} = \frac{kQ}{r}
\]

(6)

Note:
- \(V \) is just a property of the source charge and the distance that you are from the source charge; \(q_0 \) has been divided out.
- \(V \) is a scalar, not a vector!
Potential due to Collection of N Point Charges

If we have N source charges Q_1, \ldots, Q_N producing a potential at some point P, the net potential at P is found by just adding the individual potentials due to each source charge:

$$V_{net} = V_1 + V_2 + \cdots + V_N$$

$$V_{net} = \frac{kQ_1}{r_1} + \frac{kQ_2}{r_2} + \cdots + \frac{kQ_N}{r_N}$$ \hspace{1cm} (7)

Notes:

- To get the net potential, we just add individual potentials like numbers (scalars). There is no such thing as the “x (or y) component of the potential.”

- There is no charge at the point P. In fact, if you tried to calculate the potential at the location of a positive point charge Q, you’d get $V = kQ/0$, which “blows up” (i.e., increases without bound) as $r \to 0$.
Potential due to Continuous Distribution of Charge

Imagine a 3-D “blob” having total charge Q distributed continuously throughout the volume of the blob. This charged blob creates some potential at a point P outside the blob. How do we write down the potential V that this blob produces at P?

In principle, you could imagine the charge to be a collection of point charges (electrons, e.g.) and think about calculating the net potential by summing up all the kQ/r terms, as in (7). But if the total charge Q is even moderately sized (1 μC, for example), then the number of electrons – and therefore the number of terms in (7) – will be on the order of 10^{12}!
Instead, we imagine an infinitesimal element of charge dQ, so small that we can approximate it as a point charge. Then the infinitesimal contribution to the total potential at P from just this infinitesimal charge dQ is, from (6):

$$dV = \frac{kdQ}{r}$$

To get the total potential at P, we sum up (integrate) all such infinitesimal contributions dV from all the little “bits” of charge dQ in the whole blob:

$$V = \int \frac{kdQ}{r} \quad (8)$$

The integral must be taken over the entire charge distribution (length, area, or volume).
Finding V from \vec{E}

For some continuous charge distributions, it’s easier to get the electric field \vec{E} first and then get V from \vec{E}, instead of doing the integral in (8). The cases for which this is a useful trick are precisely those for which you can get \vec{E} easily from Gauss’s law, namely, cases in which the charge distribution has:

- spherical symmetry
- cylindrical symmetry
- planar symmetry
To see how to do this, just recall that the work done by \vec{F}_{elec} is, from the definition of the work done by a variable force:

$$W_{elec} = \int_{r_i}^{r_f} \vec{F}_{elec} \cdot d\vec{r}$$

But $\vec{F}_{elec} = q_0 \vec{E}$, so:

$$W_{elec} = q_0 \int_{r_i}^{r_f} \vec{E} \cdot d\vec{r}$$

And, because \vec{F}_{elec} is a conservative force, $W_{elec} = -\Delta U_{elec}$, so:

$$\Delta U_{elec} = -q_0 \int_{r_i}^{r_f} \vec{E} \cdot d\vec{r}$$

Now $\Delta V = \Delta U_{elec} / q_0$, so:

$$\Delta V = -\int_{r_i}^{r_f} \vec{E} \cdot d\vec{r} \quad (9)$$

Eq. (9) tells us how to calculate the difference in potential (the voltage) if we know the electric field. To get the potential at a point, we need to define some reference level at which V is chosen to be zero.
We already made a choice of reference level when we defined V due to a single point charge:

$$ V = \frac{kQ}{r} $$

This definition chooses V to be zero at $r = \infty$.

Adopting the same reference level for V in (9), then, we can rewrite (9):

$$ \Delta V = -\left[\int_{r_i}^{\infty} \vec{E} \cdot d\vec{r} + \int_{\infty}^{r_f} \vec{E} \cdot d\vec{r} \right] = -\left[-\int_{\infty}^{r_i} \vec{E} \cdot d\vec{r} + \int_{\infty}^{r_f} \vec{E} \cdot d\vec{r} \right] = \left(-\int_{\infty}^{r_f} \vec{E} \cdot d\vec{r} \right) - \left(-\int_{\infty}^{r_i} \vec{E} \cdot d\vec{r} \right) $$

So we define

$$ V_f - V_i = \left(-\int_{\infty}^{r_f} \vec{E} \cdot d\vec{r} \right) - \left(-\int_{\infty}^{r_i} \vec{E} \cdot d\vec{r} \right) $$

Or, for any general r:

$$ V_f = -\int_{\infty}^{r_f} \vec{E} \cdot d\vec{r} \quad \text{and} \quad V_i = -\int_{\infty}^{r_i} \vec{E} \cdot d\vec{r} $$

$$ V = -\int_{\infty}^{r} \vec{E} \cdot d\vec{r} \quad (10) $$
Finding \vec{E} from V

Consider a region of space in which \vec{E} points in the $+x$ direction, so that $\vec{E} = \langle E_x, 0, 0 \rangle$. If we go along a path from a point a at $\vec{r}_i = \langle x_i, 0, 0 \rangle$ to a point b at $\vec{r}_f = \langle x_f, 0, 0 \rangle$, the change in potential is, from (9):

$$\Delta V = -\int_{\vec{r}_i}^{\vec{r}_f} \vec{E} \cdot d\vec{r} = -\int_{\vec{r}_i}^{\vec{r}_f} \langle E_x, 0, 0 \rangle \cdot \langle dx, dy, dz \rangle = -\int_{x_i}^{x_f} E_x dx$$

Now, we know that

$$\Delta V = \int_{x_i}^{x_f} dV,$$

in which dV means the infinitesimal change in the potential along some infinitesimal “bit” of the path from x to $x + dx$. Comparing the two expressions for ΔV immediately above, we get:

$$dV = -E_x dx$$

This looks like the definition of the total differential of V:

$$dV = \frac{dV}{dx} dx,$$

from which we find:
\[E_x = -\frac{dV}{dx} \]

Now consider the more general case of a region of space in which \(\vec{E} \) changes in magnitude and direction along a path in 3-D from a point \(a \) at \(\vec{r}_i = \langle x_i, y_i, z_i \rangle \) to a point \(b \) at \(\vec{r}_f = \langle x_f, y_f, z_f \rangle \). This means that the components \(E_x, E_y, \) and \(E_z \) are functions of \(x, y, \) and \(z \): \(E_x(x, y, z), \ E_y(x, y, z), \) and \(E_z(x, y, z) \). Similarly, the potential is a function of \(x, y, \) and \(z \): \(V(x, y, z) \). The change in potential from \(a \) to \(b \) is, once again:

\[\Delta V = -\int_{\vec{r}_i}^{\vec{r}_f} \vec{E} \cdot d\vec{r} \]

The infinitesimal change in potential along an infinitesimal “bit” of this path, from \(\vec{r} \) to \(\vec{r} + d\vec{r} \), is evidently:

\[dV = -\vec{E} \cdot d\vec{r} = -\langle E_x, E_y, E_z \rangle \cdot (dx, dy, dz) = (-E_x)dx + (-E_y)dy + (-E_z)dz \]

This looks like the generalization of the total differential to 3-D:

\[dV \equiv \frac{\partial V}{\partial x} dx + \frac{\partial V}{\partial y} dy + \frac{\partial V}{\partial z} dz, \]
in which \(\frac{\partial V}{\partial x} \), \(\frac{\partial V}{\partial y} \), and \(\frac{\partial V}{\partial z} \) are the partial derivatives of \(V \) with respect to \(x \), \(y \), and \(z \), respectively. These are the derivatives of \(V \) with respect to one variable, holding the other variables fixed (i.e., treating the other variables as constants.)

Comparing the two equations immediately above, we see that:

\[
E_x = -\frac{\partial V}{\partial x} \quad (11)
\]

\[
E_y = -\frac{\partial V}{\partial y} \quad (12)
\]

\[
E_z = -\frac{\partial V}{\partial z} \quad (13)
\]

These three equations are often written more compactly as a single vector equation by introducing the gradient operator, “del”:

\[
\vec{\nabla} = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle
\]

With this operator, Eqs. (11) through (13) can be written as:

\[
\vec{E} = -\vec{\nabla} V
\]

This says that \(\vec{E} \) is the negative of the gradient of \(V \).
Properties of Conductors in Electrostatic Equilibrium (revisited)

When we talked about Gauss’s law in Chapter 22, we discussed some properties of conductors in electrostatic equilibrium ($E = 0$ inside, etc.) Now there are two more properties we can add to the earlier list:

- V is **uniform** everywhere on the surface of a conductor in electrostatic equilibrium.

- V **inside** a conductor in electrostatic equilibrium is uniform and equal to V **on the surface** of the conductor.

These two properties mean that any conductor in electrostatic equilibrium is one big “blob” of equipotential.